Jak rośliny mogą dokonywać wyczynów mechaniki kwantowej

Na półkuli północnej jest teraz wiosna, a świat wokół nas jest zielony. Za moim oknem drzewa są pełne liści, które zachowują się jak miniaturowe rośliny, zbierając światło słoneczne i zamieniając je w pożywienie. Wiemy, że ta podstawowa transakcja ma miejsce, ale jak naprawdę zachodzi fotosynteza?

Podczas fotosyntezy rośliny wykorzystują procesy mechaniki kwantowej. Próbując zrozumieć, w jaki sposób rośliny to robią, Naukowcy z Uniwersytetu w Chicago Niedawno modelował działanie liści na poziomie molekularnym. Byli zdumieni tym, co zobaczyli. Okazuje się, że rośliny zachowują się jak dziwny piąty stan materii znany jako kondensat Bosego-Einsteina. Jeszcze dziwniejsze jest to, że kondensaty te zwykle występują w temperaturach bliskich zeru bezwzględnemu. Fakt, że są wokół nas w normalny, łagodny wiosenny dzień, jest prawdziwym zaskoczeniem.

kraje o niskim zużyciu energii

Trzy najpowszechniejsze stany skupienia materii to stały, ciekły i gazowy. Gdy ciśnienie lub ciepło są dodawane lub usuwane, materia może przechodzić między tymi stanami. Często słyszymy, że plazma jest czwartym stanem materii. W plazmie atomy rozpuszczają się w zupie dodatnio naładowanych jonów i ujemnie naładowanych elektronów. Zwykle dzieje się tak, gdy materiał jest zbyt gorący. Na przykład Słońce jest w większości dużą kulą przegrzanej plazmy.

Jeśli materia może być bardzo gorąca, może również ulec przechłodzeniu, powodując, że cząstki wpadają w stany o bardzo niskiej energii. Zrozumienie, co dzieje się dalej, wymaga pewnej wiedzy z zakresu fizyki cząstek elementarnych.

Istnieją dwa główne typy cząstek, bozony i fermiony, a tym, co je wyróżnia, jest właściwość zwana spinem — osobliwie mechaniczna właściwość związana z momentem pędu cząstki. Bozony to cząstki o spinach całkowitych (0, 1, 2 itd.), podczas gdy fermiony mają spiny połówkowe (1/2, 3/2 itd.). Ta właściwość została opisana wcześniej Teoria statystyki spinowej, co oznacza, że ​​jeśli zamienisz dwa bozony, zachowasz tę samą funkcję falową. Nie możesz zrobić tego samego z fermionami.

READ  Teleskop Hubble'a znalazł „kosmiczną dziurkę od klucza” głęboko w kosmosie i jesteśmy zachwyceni: ScienceAlert

W Kondensator Bosego-Einsteina, bozony w substancji mają tak niską energię, że wszystkie zajmują ten sam stan, działając jak pojedyncza cząstka. Pozwala to zobaczyć właściwości kwantowe w skali makroskopowej. A Kondensator Bosego-Einsteina Po raz pierwszy powstał w laboratorium w 1995 roku, w temperaturze nie przekraczającej 170 nanokelwinów.

Ilościowa fotosynteza

Przyjrzyjmy się teraz, co dzieje się w typowym liściu podczas fotosyntezy.

Rośliny potrzebują trzech podstawowych składników do wytwarzania własnego pożywienia – dwutlenku węgla, wody i światła. Pigment zwany chlorofilem Pochłania energię ze światła o długości fali czerwonej i niebieskiej. Odbija światło w innych długościach fal, co sprawia, że ​​roślina wydaje się zielona.

Na poziomie molekularnym sprawy stają się o wiele bardziej interesujące. Zaabsorbowane światło wzbudza elektron w chromoforze, który jest częścią cząsteczki decydującą o jej współczynniku odbicia lub absorpcji światła. To rozpoczyna serię reakcji łańcuchowych, które kończą się produkcją cukrów dla rośliny. Korzystając z modelowania komputerowego, naukowcy z University of Chicago zbadali, co dzieje się z bakteriami zielonej siarki, mikroorganizmem fotosyntetyzującym.

Światło wzbudza elektron. Teraz elektron i pusta przestrzeń, którą pozostawił, zwana dziurą, działają razem jako bozon. Ta para elektron-dziura nazywana jest ekscytonem. Ekscyton przemieszcza się, aby dostarczyć energię gdzie indziej, gdzie powstają cukry dla organizmu.

„Chromofory mogą przenosić energię między sobą w postaci ekscytonów do centrum interakcji, w którym energia może być wykorzystana, na przykład grupa ludzi podających piłkę do celu” – wyjaśniła Big Think Anna Scottin, główna autorka badania. .

Naukowcy odkryli, że ścieżki ekscytonów w zlokalizowanych regionach są podobne do tych obserwowanych wewnątrz kondensatora ekscytonów – kondensatu Bosego-Einsteina utworzonego z ekscytonów. Wyzwanie związane z kondensatorami ekscytonowymi polega na tym, że elektrony i jony mają tendencję do szybkiej rekombinacji. Kiedy to nastąpi, ekscyton znika, często zanim powstanie kondensator.

READ  Zdjęcia satelitarne pokazują, że antarktyczny szelf lodowy zapada się szybciej niż wcześniej sądzono

Bardzo trudno jest wytworzyć te kondensaty w laboratorium, ale były one tutaj, na oczach naukowców, w chaotycznym organizmie w temperaturze pokojowej. W wyniku skondensowanej formacji ekscytony utworzyły pojedynczy stan kwantowy. Zasadniczo zachowywały się jak pojedyncza cząsteczka. Tworzy to nadciecz – płyn bez lepkości i bez tarcia – umożliwiając swobodny przepływ energii między chromoforami.

Ich wyniki zostały opublikowane w PRX Energia.

chaotyczne warunki

Ekscytony zwykle rozpadają się szybko, a kiedy już to robią, nie mogą już przenosić energii. Aby zapewnić im dłuższe życie, zwykle należy je przechowywać w bardzo niskich temperaturach. W rzeczywistości nigdy wcześniej nie widziano kondensatorów ekscytonowych powyżej temperatury 100 K, czyli letni minus 173 stopnie Celsjusza. Dlatego tak zaskakujące jest obserwowanie tego zachowania w prawdziwie chaotycznym systemie w normalnych temperaturach.

Więc co tu się dzieje? To kolejny sposób, w jaki natura nieustannie nas zaskakuje.

„Fotosynteza działa w normalnych temperaturach, ponieważ natura musi pracować w normalnych temperaturach, aby przetrwać, więc proces ewoluował, aby to robić” – mówi Schotten.

W przyszłości kondensaty Bosego-Einsteina o temperaturze pokojowej mogą mieć praktyczne zastosowania. Ponieważ zachowują się jak pojedynczy atom, kondensaty Bosego-Einsteina mogą dać nam wgląd w właściwości kwantowe, które są trudne do zaobserwowania na poziomie atomowym. Mają też aplikacje do GyrosI Laser kukurydzianyI Bardzo dokładne czujniki czasu, grawitacji lub magnetyczneI Wyższe poziomy efektywności energetycznej i transmisji.

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *